530 research outputs found

    Cylindrically symmetric, static strings with a cosmological constant in Brans-Dicke theory

    Get PDF
    The static, cylindrically symmetric vacuum solutions with a cosmological constant in the framework of the Brans-Dicke theory are investigated. Some of these solutions admitting Lorentz boost invariance along the symmetry axis correspond to local, straight cosmic strings with a cosmological constant. Some physical properties of such solutions are studied. These strings apply attractive or repulsive forces on the test particles. A smooth matching is also performed with a recently introduced interior thick string solution with a cosmological constant.Comment: 8 pages, Revtex; Published versio

    Finite temperature properties of the two-dimensional SU(2) Kondo-necklace

    Full text link
    We analyse several thermodynamic properties of the two-dimensional Kondo necklace using finite-temperature stochastic series expansion. In agreement with previous zero-temperature findings the model is shown to exhibit a quantum critical point (QCP), separating an antiferromagnetic from a paramagnetic dimerized state at a critical Kondo exchange-coupling strength Jc1.4J_{c}\approx 1.4. We evaluate the temperature dependent uniform and staggered structure factors as well as the uniform and staggered susceptibilities and the local 'impurity' susceptibility close to the QCP as well as in the ordered and quantum disordered phase. The crossover between the classical, renormalized classical, and quantum critical regime is analyzed as a function of temperature and Kondo coupling.Comment: 4.2 pages, 6 figure

    Integreret produktion:den gyldne middelvej i fremtidens fødevareproduktion

    Get PDF

    The PSI-E subunit of photosystem I binds ferredoxin:NADP+ oxidoreductase

    Get PDF
    AbstractA photosystem I complex containing the polypeptides PSI-A to PSI-L, light-harvesting complex I and ferredoxin:NADP+ oxidoreductase has been isolated from barley using the non-ionic detergent n-decyl-β-d-maltopyranoside. The ratio between bound forredoxin:NADP+ oxidoreductase and P700 is 0.4 ± 0.2. The complex is highly active in catalyzing light-induced transfer of electrons from plastocyanin to NADP+ at rates of 280±150 and 1800 ± 800, μmol NADPH/(mg chl h), without and in the presence of saturating amounts of exogenously added ferredoxin:NADP+ oxidoreductase, respectively. Endogenously bound ferredoxin:NADP+ oxidoreductase interacts with the PSI-E subunit as demonstrated by cross-linking experiments using two different types of cross-linkers and identification of the products by Western blotting and the use of monospecific antibodies

    Assembly of dynamic P450-mediated metabolons - order versus chaos

    Get PDF
    PURPOSE OF REVIEW: We provide an overview of the current knowledge on cytochrome P450-mediated metabolism organized as metabolons and factors that facilitate their stabilization. Essential parameters will be discussed including those that are commonly disregarded using the dhurrin metabolon from Sorghum bicolor as a case study. RECENT FINDINGS: Sessile plants control their metabolism to prioritize their resources between growth and development, or defense. This requires fine-tuned complex dynamic regulation of the metabolic networks involved. Within the recent years, numerous studies point to the formation of dynamic metabolons playing a major role in controlling the metabolic fluxes within such networks. SUMMARY: We propose that P450s and their partners interact and associate dynamically with POR, which acts as a charging station possibly in concert with Cytb5. Solvent environment, lipid composition, and non-catalytic proteins guide metabolon formation and thereby activity, which have important implications for synthetic biology approaches aiming to produce high-value specialized metabolites in heterologous hosts

    The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence

    Get PDF
    Cyanogenic glucosides (CNglcs) are widespread plant defence compounds that release toxic hydrogen cyanide by plant β-glucosidase activity after tissue damage. Specialised insect herbivores have evolved counter strategies and some sequester CNglcs, but the underlying mechanisms to keep CNglcs intact during feeding and digestion are unknown. We show that CNglc-sequestering Zygaena filipendulae larvae combine behavioural, morphological, physiological and biochemical strategies at different time points during feeding and digestion to avoid toxic hydrolysis of the CNglcs present in their Lotus food plant, i.e. cyanogenesis. We found that a high feeding rate limits the time for plant β-glucosidases to hydrolyse CNglcs. Larvae performed leaf-snipping, a minimal disruptive feeding mode that prevents mixing of plant β-glucosidases and CNglcs. Saliva extracts did not inhibit plant cyanogenesis. However, a highly alkaline midgut lumen inhibited the activity of ingested plant β-glucosidases significantly. Moreover, insect β-glucosidases from the saliva and gut tissue did not hydrolyse the CNglcs present in Lotus. The strategies disclosed may also be used by other insect species to overcome CNglc-based plant defence and to sequester these compounds intact

    Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts.

    Get PDF
    Chemical defences are key components in insect⁻plant interactions, as insects continuously learn to overcome plant defence systems by, e.g., detoxification, excretion or sequestration. Cyanogenic glucosides are natural products widespread in the plant kingdom, and also known to be present in arthropods. They are stabilised by a glucoside linkage, which is hydrolysed by the action of β-glucosidase enzymes, resulting in the release of toxic hydrogen cyanide and deterrent aldehydes or ketones. Such a binary system of components that are chemically inert when spatially separated provides an immediate defence against predators that cause tissue damage. Further roles in nitrogen metabolism and inter- and intraspecific communication has also been suggested for cyanogenic glucosides. In arthropods, cyanogenic glucosides are found in millipedes, centipedes, mites, beetles and bugs, and particularly within butterflies and moths. Cyanogenic glucosides may be even more widespread since many arthropod taxa have not yet been analysed for the presence of this class of natural products. In many instances, arthropods sequester cyanogenic glucosides or their precursors from food plants, thereby avoiding the demand for de novo biosynthesis and minimising the energy spent for defence. Nevertheless, several species of butterflies, moths and millipedes have been shown to biosynthesise cyanogenic glucosides de novo, and even more species have been hypothesised to do so. As for higher plant species, the specific steps in the pathway is catalysed by three enzymes, two cytochromes P450, a glycosyl transferase, and a general P450 oxidoreductase providing electrons to the P450s. The pathway for biosynthesis of cyanogenic glucosides in arthropods has most likely been assembled by recruitment of enzymes, which could most easily be adapted to acquire the required catalytic properties for manufacturing these compounds. The scattered phylogenetic distribution of cyanogenic glucosides in arthropods indicates that the ability to biosynthesise this class of natural products has evolved independently several times. This is corroborated by the characterised enzymes from the pathway in moths and millipedes. Since the biosynthetic pathway is hypothesised to have evolved convergently in plants as well, this would suggest that there is only one universal series of unique intermediates by which amino acids are efficiently converted into CNglcs in different Kingdoms of Life. For arthropods to handle ingestion of cyanogenic glucosides, an effective detoxification system is required. In butterflies and moths, hydrogen cyanide released from hydrolysis of cyanogenic glucosides is mainly detoxified by β-cyanoalanine synthase, while other arthropods use the enzyme rhodanese. The storage of cyanogenic glucosides and spatially separated hydrolytic enzymes (β-glucosidases and α-hydroxynitrile lyases) are important for an effective hydrogen cyanide release for defensive purposes. Accordingly, such hydrolytic enzymes are also present in many cyanogenic arthropods, and spatial separation has been shown in a few species. Although much knowledge regarding presence, biosynthesis, hydrolysis and detoxification of cyanogenic glucosides in arthropods has emerged in recent years, many exciting unanswered questions remain regarding the distribution, roles apart from defence, and convergent evolution of the metabolic pathways involved
    corecore